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THE STABILITY OF SATURN’S RINGS

By G. R. GOLDSBROUGH, F.R.S.

(Received 9 January 1951)

Maxwell determined the conditions of stability of a single ring of small particles moving round
a large primary. He also made some incomplete remarks on the effects of introducing a second ring.
The present investigation considers in greater detail the stability of two rings of particles moving
about a primary and subject to the gravitational attractions of the primary and of each other. It is
shown that such a system, under conditions satisfied by the Saturnian system, is stable, the particles
oscillating finitely about their mean positions. It is inferred that the Saturnian system, considered
as a number of such rings, is therefore also stable.

INTRODUCTION

In his paper on the effects of collisions among the particles of Saturn’s ring, Jeffreys (1947)
has deduced that the ultimate state would be a ring nowhere more than one particle thick
and with spacing just sufficient to avoid collisions. The question then arises whether, in this
state, the system would be stable or unstable under small disturbances.

Maxwell, in his memoir on Saturn’s Rings (1857), showed that a single ring of equal
particles, moving about the planet with a velocity equal to that of a particle in a circular
orbit at the same distance, would be stable under small disturbances if the particles forming
the ring were sufficiently small in mass compared with that of Saturn. In paragraph 25 of
his paper he further examined the motion of two such rings reacting upon each other. This
part of his work is, however, incomplete and lacking in generality. The present paper ex-
amines Maxwell’s problem of two rings afresh.

Two co-planar circles, concentric with Saturn, have equal particles approximately equally
spaced upon them; and the particles are subject to the gravitational attraction of Saturn and
of each other. The number of particles in each ring is assumed to be the same, although an
extension of the analysis could be made so as to allow for the numbers being different. It is
found that when the particles are sufficiently small and sufficiently numerous, there exists
a system of steady motions in which the particles are exactly equally spaced on their respec-
tive rings and the rings rotate about the primary with appropriate velocities.

Small displacements are then given to the particlesin the plane of motion, and it is deduced
that the motion can be expressed in terms of series of periodic functions. The motion, in the
sense of small displacements, is therefore stable. The general conclusion is that, under con-
ditions satisfied by the Saturnian rings, a pair of rings forms a stable system.

The complete problem of a number of rings could be attacked by an extension of the
methods used for a pair of rings, though the work would be lengthy. From the indications
of the analysis here given however, it would be safe to conclude that, just as for two rings,
stability would ensue for any finite number of rings, under the stated conditions.

When the number of particles in a ring is taken as p, the equations of stability appear as
4 linear differential equations of the second order. By means of a Poincaré transformation,
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2 G. R. GOLDSBROUGH ON THE

these are reduced to four. The relative simplicity of the coefficients appearing in these
equations follows from the large value of p, which enables asymptotic approximations to
be used.

The equations themselves have periodic coefficients and involve a small parameter. By
the methods of Poincaré (1892) and Moulton (1920) solutions in convergent series of powers
of this parameter (or of its square root) are readily obtained.

- FORMULATION OF THE PROBLEM

Consider the primary, Saturn, as a fixed Newtonian centre of mass M. With centres at
Saturnlet there be two approximately circular co-planar systems of p particles, each of massm,
one circle being of radius ¢ and the other of radius &', with @’ >a. The particles are subject
to the gravitational attraction of M and of each other. If the mutual attraction of the
particles is neglected, a possible system would be for each set to be on the circumference of
its own circle at the vertices of an inscribed regular polygon. The actual motion of the
particles involves a departure from those mean positions.

The distances apart of pairs of consecutive mean positions on the first circle will be 27a/p,
and on the second circle 2ma’[p. Now choose the radii so that ¢’ —a = vw(a+a’) [p, where v is
some positive number. We have no knowledge as to the relation in the actual Saturnian
system between the distances apart of the consecutive particles in one ring and the differences
of the radii of that ring and the next. But by use of the factor v, adjustments could be made to
meet any value of this relationship.

Putting a/a’ = «, which is less than unity, we have

_1—vmfp
‘= 1+vm/p’

We shall assume, consistently with observation, that the number of particles in any one
ring is very large.

Then a=1-—2vm/p
and limaf = e~2m7,
p—>o

The numerical values of this limit are important in what follows:
v=1, af—>1-867x1073,
=2, 3-49 %1078,
=3, 6:54 x 1079
We also require the Laplace expansions
(1—20cosp+a?)~t = %bo—{—%; b, cos ng,

(1—2acosg+a?)~t = d¢y+ > ¢, cosng,
1

T(n+3) o
where 1 — I—,(—%()%F(%,n—}—%,n—i—l,a?),
I'(n+2)ar
3¢, =féW%L—T)F(%,n+%,n+l,a2). (1)
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STABILITY OF SATURN’S RINGS 3

Using the well-known result, that if y —a— £ <0, then, as x—>1—0,

Fiau )+ (FOEEHEZT (1 —r=oct) 1,

n

and applying it to (1), we have

1
e 2~ as a—>1.
2¥n T (1 —0(2)2’
2 a—2v7r
e
Hence ic _pe™
20p 423
and 3oy = 3C, X 4727,

We shall therefore neglect ¢, ¢;,, ... compared with ¢,,.

Maxwell’s criterion for the stability of a single ring was that the mass of the ring should
be sufficiently small compared with that of Saturn. In our notation the numerical condition
(Tisserand 1891) may be expressed m/M <2/p%. We shall assume in what follows that this
condition is fulfilled.

THE POSSIBILITY OF STEADY MOTION

Taking an origin at the centre of Saturn (assumed fixed), let the plane polar co-ordinates
of a particle of the inner ring at time ¢ be (r,,0,), and those of a particle of the outer ring be
(ry, 03), where 1 =1,2,3, ..., 5.

The equations of motion for a particle of the inner ring are

. M 9F, 3G,
r,\—hﬁ%:—g‘l‘ﬁﬁ‘ (?ri/’ (2)
dt (7/10/1) - 00/\ +_(’)_0-:lé, (3)

Fy = %’m/AM,
A3, = r5+r%—2rr,cos (0,—0,),
G = %m/DM,
D3, = 13472 —2r7,cos (0,—0,).

The summation sign 2’ omits the term where A = .

The problem throughout is a plane problem, and no displacements perpendicular to
the common plane of the two rings are considered.

Consider the possibility of a solution in which

7, =a, 0,=wt+2md/p,
ri=d, 0y=u't+2mp+e,)

-

and for which v, o’ are as yet undetermined. Substitution in equation (2) of these values gives

M mg, m & a—a cos{(w—0') t+2m(A—pu)/p—e}
_Z?_Eg %Cosecrr(/l—ﬂ)/[?—zﬂ; (Diﬂ)o . (4)

1-2

for all A,

=
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4 G. R. GOLDSBROUGH ON THE
Writing ¢ = (w—w’) t+27(A—p) [p—e, the last term gives

_%g(a—cos@ (3¢co+ ¢, cosng) == —Z%,E%[aco—cl—l-él(%cn—cn_l— 1) cosn¢:|.
Now S cosng = 3 cosn{(w—w’) t+2m(A—u)/p—e}
” Iz

=0, unless n=p,2p, 3p, ...

= pcosp{(v—0v") t—¢},
taking only the value n=p.

The final value of the summation is then

A A

_%5/2 [aco—cy+ (206, — ¢,y —¢, 1) COS p{(0—0") E—¢}]. (5)

The Laplace coeflicients ¢, are monotonic functions of « increasing with « in the range
0<a<1, Further, as n—>o0, ¢,/c,,.,—a.
Hence for p large, we have approximately

SOCIETY

dot~1  pab~!
206y = Cpy —Cps1 = — G-
m(l—a?)  vmw

_ b
vm?’
The value of the summation (5) then becomes

573%25[ i +a—ﬁ;lcosp{(a)——w') t—e}:l. (6)

v pm?

and Ay —C) =

OF

The coeflicient of the trigonometric term

2501 200+ Mubtl M
mp2o. mp2a o

- [7/2 5= p3 ) 5 = 5 1:86 X 10710,
2aa “vm 2avms " a’pvm a

if p be taken as 106 and v as 1.

The coefficient will diminish still more rapidly if the separation between the rings be made
greater, i.e. if v be increased. The variable term may therefore certainly be neglected com-
pared with M/a3.

Also, taking now the first term of (6),

mp*e Moad M

_ 5 =7 p— 6 == =
2aa’2v7r<a3pv712 a310 , for p=10%v=1a=1

A A

Hence this term adds a very small constant correction to the first term of the right-hand
member of (4).

SOCIETY

m o,y m £}
The term ag%: tcosecm(A—p)fp = 1 Elcosec nm/p

_mp 272 i
= 8a37r10g (2p%/m?%), approxlmately,

OF

M 1 9/ 9
<E4—7507210g(2p /77 )

This term is again quite negligible compared with A/a3.
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STABILITY OF SATURN’S RINGS 5

The equation (4) then gives with a high degree of approximation w? = M/a3.
In the same way the equation (3) gives approximately

d

maa’ sin ¢

d, s\ s mecos(A—mmp
V30 = =2 g Oy mfp 2 (DY), "
The first term on the right vanishes in summation. Also
sin ¢ sing .,
= 3 13Co+ 2.6, COS T
%(‘D:}(ﬂ)ﬂ % a’3 {2 0 z ¢}
= 3 L lapsing Se,fsin (1-+1) g—sin (1—1) )]
”
— 2{:,3 (¢y-1—€p41) Sinpf{(@—0") t—e}.
40071
As before 3(cp-1—6p41) _>7T(1——a§)

and the equation (7) becomes

d, g 4 -1 ,
(—ﬁ(r,%ﬁ/\) = —%smp{(w—w ) t—e}.

dmaot~!
ma'%(1—a?) (w—o')

Therefore 120, = 2w+ cos p{(w—w') t—e}.

But 0 —o' = 3vmw/p, approximately, hence

4dmaot1 _ PPmaot~!  2wa’ab™!
na'?(1—a?) (w—w')  3v?niwa’? = 3pvimd

=4x10"1g%, for v=1,p=106

The integral of this equation may therefore be taken as
120, = a?o.
It has therefore been shown that the form of solution assumed satisfies the equations (2)

and (3) with a high degree of accuracy when p is large.
Similarly for the second ring we have

a3w'? =M.

These two results show that when p is large the particles in each ring remain at the corners
of regular inscribed polygons, even when the rings are nearly equal in radius, and that the
rings rotate as single particles would at the same distance.

EQUATIONS FOR THE DISTURBED MOTION

We assume that the steady motion of the last section is now disturbed slightly. We take
ro=a(l+py), 0y=wt+2md/p+n,,
rn=a'(1+py), Op=0o't+2mp+etn).

These are substituted in equations (2) and (3) and only the linear terms in p, 7 retained.
The terms corresponding to (4) and (7) cancel out identically. The result is a set of two homo-
geneous linear equations. Two more parallel equations can be written down for the particles
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6 G. R. GOLDSBROUGH ON THE

in the outer ring. The four equations are to be solved, giving the values of p,, p3, 7, 7y I
terms of the time and of arbitrary constants. In giving A values 1 to p we arrive at 4p equations
defining the motion of the 2p particles forming the two rings.

Following this out we have the four equations

Pa— 2y —3wpy = 21 [{(m (AM)} Pa +{arf; (Aﬂ;)} Puty {arjaﬁk(AM)} m-n)] )
+2[{37A(DM)} Pat al{amar( A,,)} l{arAaeA(m)} (1))
int2 = o3 [ (S o Hagar, ()] e+ alogg (£2)), 0210
*a z[{aﬂAm (DM)} a{aakar (’Dni;)}op {aﬁk(DM)} ]’}
i s s bl A o]
3ol o) o e ) ol (o)) 050
ik ' = [{%3@( o, A+{ara;ﬁA(An;)}” + ol )] 0]

[ {MAW( ) +{9‘0_;?%E(Dm J) e {9?92( )}O(”'F”ﬂ)]v

In these equations, it will be remembered that A and g take all integral values from 1 to p,
and the summation sign >’ omits the value z = A.

2
Apply now the regular Poincaré transformation

k — zp e—27rzsz\/1)

S p -
| (9)
] == e~2ﬂz‘sz\/p,
s p /\21}7){
with the conjugate forms
b
0 = z ks e2misd/p
s (5=1,2,3,...,p). (10)

b
777( — z ls eZﬂz‘sA/p
s=1

Similar forms are used for p’, 7’
On multiplying each of the equations (8) by (1/p) e™?7s4/# and summing from A = 1 to 2,
the left-hand members become

k,— 20l — 3wk,
[+ 20k,
k—2uw'll— 3wk,
I'+20'K..
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The first three terms of the right-hand members are those that appear in the theory of a
single ring. The results of the summation can be quoted from Pendse (1935). We retain only
the significant terms. In the order of the equations the terms are
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mbZI[ sin? (mns/p) k, | sin (2mns/p) cos (nm[p) il
a3, 5 L 4sind (nm/p) + 8sin? (nm/p) ik
mbZI[  sin (2mns/p) cos (nm[p) ik, | sin? (nsm/p) L]
2 1 8sin? (nm/p) " 2sin3 (nm/p) 1°
mbZI[ sin2 (mns/p) k. | sin (2mns/p) cos (nm/p) 1]
32,1 asin® (umjp) ssin? (nnlp)
m X[ sin (2mns/p) cos (nmp) ik, sin? (nsw/p) [, ]
a3 5L 8sin? (nm/p) 2sin® (nw/p) 1°
Putting p-" zl sin’ (mns)p)

1 4sin3 (nm/p)’

r5lsin (2mnsp) cos (nm/p)
o -5 mEmy el

the above terms become

:% (_I)Sks_l—ZQsls),

”—é(

iQ.k,+2PL),
S~ Pk +iQL),

5 (—iQ.k+2P.L).
The reduction of the remaining terms of equations (8) is more complicated. One example
will be worked out and the results of the others quoted. Since
Dy} = {3+ 2—2ry1), cos (0,—0,)}7,
(Di})o = {a*+a'?—2ad’ cos ¢, }*

= (a')"1{14a%—20cos ¢M}“%

— (a’)—l{%bo—l—é1 b, cos ”¢M} (@ =ald).

therefore

Consider, for example, the fifth term of the right-hand member of the first equation (8):

af 0> (m a( 0% (m ,
%E{Br,\ar;(l_);)} Z {(?a(?a (DA ) }'0
d? ,
— —W% (22&—1—&3&—2) (3bo+2b, cosng,,) p,
On substituting for p/, from (10) the expression becomes

m d a* 1 ! a2mirplp
a3 (2 ) (30 + Sb, cosng, ) E.ezrimrs.
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8 G. R. GOLDSBROUGH ON THE
d a? 2mirp/p — ()
Now %(2%—1—0&;{—“«2)506 ~ —O,

and
22(2; —I—oc;,l )b cos ng, , e>m 1P
= %ZZ(2 +ag & )b [exp i{n(w—0") t+2mn(A—p) [p — ne+ 2mru/p}
+expi{—n(w—0") t—2mn(A—p) [p+ne+ 2mru/p}].

If we take it that terms in 4 of higher order than b, are negligible, then the g-summation
of the above gives zero except when n = r, or n+7 = p. In these cases the summation gives

d
———2{:—% k, (2d +ag )[b expi{r(0—w") t+ 2mrd[p—re}
+b,_,expi{—(p—7r) (0—0") t+2mrA[p+(p—7) }].

This has now to be multiplied by (1/p) e~?7is*/b, as before indicated, and the sum with
regard to A taken. The result is then

,222 (2 o 2) [0, expi{r(w—") t+2m(r—s) AJp—r€}
by pexpi{— (p—1) (0—0') 4 2m(r—5) Ap+ (p—1) 1.

The A-summation vanishes except when 7 = s, and the value is then

om k'( y P )[b expi{s(w—w’) t—se}+b,_ expi{—(p—s) (0—0") t+(p—s) e}].

" 2aa?

The results for the remaining terms of the equations (8) are then as follows:

02 (m _ mp d?b,
%{373 (z)—w)}of’a =205 d2 "
a( 02 m , mpk, d ,d . ,
S (o)) A= — s gy b expis{(o—) 1)
Y2 A% Ap 70 .
+b,_sexpi(p—s) {—(0—0) t-+e]],
1( 02 (m o mpild
%a{m(m)}ﬁ”r’h)— 2ua’s g S0 XP U0 L=
—(p—9) by expi(p—s) {—(0—0)t+e}],

a( 92 m , mpik; d . ,
%aﬁ{a@ 7, (5{)}0” b= gy gy [©hs XP (0 —0) 1—6) |
—a(p—s) b, sexpi(p—s){—(0—0) t+e}],
1(02( m , mpl,
g—z{gﬁ“z (”D‘—) O(WA—ﬂﬂ) 5% > [s%h expis{(w—w’) t—e} |
+(p—5)2by_sexpi(p—s) {— (0—0") t+€}],
ik k, d e
%i{ 7 (ﬂ)}op”:' n;{:'3da“2 [b,expis{(w' —w) t+€}
+bysexpi(p—s) {— (&' —0) t—e}],

BB ae ),
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STABILITY OF SATURN’S RINGS 9
1 2 (m , _mpil d e
7 2oz (o)), 0h =m0 = s g Loshexp s~y 149 |
—a(p—9) b,_;expi(p—s){—(0'—0) t—}],
—~—)} py= n;[n,l; oc—[sb expis{(0’ —w) t+¢}
0
—(p—9) by—sexpi(p—s) {— (0" —0) t—¢]],

do

db d

1577s . B . 15
2deC-BS’ ) 2 d( ) s’

d?b, " db d?b,
Wos =B, (b2 +12%8) = D,

Since b, and its derivatives are all positive, each of the quantities B, C and D is also
positive. N

If e=m/M, mla"®=eM/a"® = ew’?,
and mla’3 = eMo3/a® = eadw?.
)
Let Q= s
w—w
N
w'—"([),,

(w—0")t—e =T,

and let the dots now indicate differentiation with regard to 7.
The equations (8) then become
ky—2QI — 302k, = eQ?[k (a3By— P,) +il,Q,— k,a{C; e*™ +C,_ e~ =97}
—ily02{sB, eisT— (p—s) B, _ e~ i=97)],
[ +2Qk, = eQ?[ —ik, Q,+ 21, P,—ik.a{sC, el — (p—s) Cy_s it}
+1l0{s?B e+ (p—s)2 B,_ e~ it-97}],
k,—2Q'l;— 3Q%k; = eQ*[k,(Dy—P,) +il; Q,— k{Cie™ 57+ C,_ eit=97}
+il{sC e 57— (p—s) C,_ et~y
l;+2Q0K, = eQ?[ —ik, Q,+2l; P+ ik afsB,e " — (p—s) B,_, eitb=97}
+U{s*B;e™ ¥+ (p—s)? B, _, et=97}].|

()

These equations are linear, with periodic coefficients. The solutions are obtainable by the
special methods appropriate to such equations.

Vor. 244. A. 2
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10 G. R. GOLDSBROUGH ON THE

SOLUTION OF THE EQUATIONS OF STABILITY

The equations (11) are linear with coefficients of period 27 in the independent variable 7.
For convenience in writing we shall drop the suffix s, except where necessary, and restore
it again later. By Flocquet’s theorem, the solutions of this type of equation have the form

k=ef(r), kK= C“f'(T),}

(12)
[=e7g(r), U =eg (1),

where f, g, /', ¢’ are functions of 7 of period 27, and « is a constant determined by the fulfilling
of this condition. If « is real and positive, it is evident that the solutions of the equations (11)
will increase without limit as 7 increases; and if « is a pure imaginary, the solutions may be
regarded as bounded and the system corresponding to them stable.

Since the equations involve a small parameter ¢, we may apply Poincaré’s theorem (1892),
which states that the indices «, and the functions f, /7, g, ¢’ may be expressed in power series
of ¢}, or ¢, according to the nature of the roots of the characteristic equation. In the expansions
of £, f', g, g’ the arguments must be periodic functions of 7 of period 2.

It is shown by Poincaré that the series formed in this way are convergent for sufficiently
small values of ¢. We shall assume that this condition is satisfied.

The characteristic equation is obtained by putting ¢ = 0 in (11) and solving. If a solution
of the reduced equations is e*”, the equation to determine « (the characteristic equation) is

k2—3Q2,  2Q«, .

2Qk, K2, . .
=0
k2—3Q2  2Q'k
2Q0'«, k2
k2—3Q2  2Q«
or =0,
2Qk, K2
k2—3Q72 2Q0'k
and = 0.
2Q'k, K2

Hence the roots of the characteristic equation are (£1:€2, 0, 0) and (+£:£,0,0).

The solutions for the zero roots are obtained in series of integral powers of ¢t; and since
Q— Q' = 1, the remaining roots occur in pairs which differ by an imaginary integer, from
which it follows that the series involved are in integral powers of .

A special case would arise if € should be an integer n. The equation to determine 7 in
terms of the data of the problem is

(i omp) = (=)
1+vm/p) n)

An integral solution for n would require a special adjustment of v and p. We shall therefore
assume € to be non-integral.


http://rsta.royalsocietypublishing.org/

L

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

A B

yA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STABILITY OF SATURN’S RINGS 11

It should be noted that the complete solution of equations for given s must exhibit eight
linearly independent integrals.
Substitute now the form (12) in the equations (11). Then we have

K2f+2f +f—2Q(kg +8) — 3Q% 1
= e[ f(®By—P) +igQ—f"e{C; e+ Cy_ e =97}
—ig'a%{sB. eiT— (p—s) Bj,7—s e-itb-9m],
K2g+2kg+ 5+ 2Q(kf+f) = Q[ —ifQ +2¢P—if 'afsC, e — (p—s) C,_ e~ itb=97}

. ) —I—g'OC{J'ZBSCiST"I‘ (p_S)ZBp_S e—i(p-s)r}],
K 26" +f -2 (kg +87) —3QY" (13)
— C‘QIZ[f,(.DO—P) "I‘ig/Q“f{C; C_iST—I—Cj:_sei(p_s)T}
| TiglsC, e (p—5) G, i),
Kzg,+2Kg,+g,+2QI(I§f,+fl)
— QY —if Q28 P+ ififsBi e (p—s) By, cit=97)
+g{s2B, e~isT |- ([)—S)ZBﬁ_SCi(p—S)T}]-

SOLUTIONS FOR THE CASES WHERE THE CHARACTERISTICS DIFFER BY AN IMAGINARY INTEGER
! ’ ’
Let f=hte i+ fr=f+ei+..,
’ ’ ’
§=8 Te&it..., & =8g+egqt-.,
K=Kytek+...,

Substitute in equations (13) and equate to zero the coeflicients of corresponding powers
of ¢. We consider the two pairs of characteristics separately.

(i) Kk=1Q, Q-Q =1

Consider the terms independent of e.
The equations resulting are

— 4Q2f, 4+ 21Qf, + f, — 2Q%g,— 2Qg, — 0,
—QZgo‘]“Qngo"‘go“f‘Qinﬂri-QQﬂ =0, 14)
— Q2+ 20+ [ — 200 igh — 20Y g4 — 32y — 0, J

— Q200+ 21080+ Fy -+ 200 if g +2Qfy — 0.

These equations form two independent pairs. The solutions are: for the first pair, 1, e=*7,
e~ 17, e~27; and for the second pair, e=¥7, e~ 7 e~iT) ¢~i22-D7  Ag already stated, the
functions f, /', g, ¢’ are to be determined as having the period 27 in 7 (or to be constants).
Hence the solutions fulfilling this condition are

Jo =.7;)a ﬁ), :.70/ e,
b= 2 o= 2Tse )

where f;, fy are arbitrary constants.

(15)
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12 G. R. GOLDSBROUGH ON THE

Consider next the terms associated with the first power of ¢. The resulting equations are,
on inserting the values for f,, g0, fo, &0 as given in (15),
—4Q2f, + 2iQf, + 1, — 21025, — 2Q4,
= {2iQk, + Q*(e*By—P—2Q)} f,
— [ (aC;—2025B;) 7+ {aC,_ +202(p—s) B, _Je =97 fi e,
— %, 42104, + §, + 2Q%f, + 20,
= {2Qk, + Q% (4P— Q) )/,
— Q[ (asC, —2a5°B,) 57— {a(p—5) G, —2a( p—5)2 B, e~ 97| e,
— (Q24-3Q2) f + 2iQf | + J — 2100 g} — 20V ¢
={20Qk, +Q'2(Dy—P—2Q)} fy e~
+ Q[ (C+25C) e¥7—{C)_ —2(p—s3) C,_} e =97] fo,
— 2] + 2108+ §{ + 2Q f{ 4 2Q'f/
= {20k, + Q'%(4P— Q) }fy e~ "
+ Q%[ (asB; +2052B,) e 57 -{ — (p—s) aB,_ +2(p—s)2aB,_, }eit=97] f;.]
The left-hand members of these equations have the same form as those of (14), and the
complementary functions will be the same in form as (15) with fresh arbitrary constants.
The right-hand members of these equations consist of constant terms and terms of period
2m in 7. The occurrence of constant terms in the right-hand members of the first pair will
give rise on integration to terms of the form K7, K being a constant. And the occurrence of
terms in e~ in the right-hand members of the second pair will give rise to terms of the form
7e~ 7. The undetermined constant x; and the constants of integration must be chosen so
that such terms disappear from the integrals.
Two cases arise which require separate consideration: s =1, s==1. The case s = p-1
cannot arise.
(a) s=1
If we deal with the critical terms only, the equations (16) again break up into two in-
dependent pairs. The first pair gives

L (16)

— 40, + 2Qf, -+ f, — 2Q0%g, — 20, = {2iQk, + QXe3By— P—2Q)} /y,
Q2,420+, + 2%, 120, — {20k, + Qi (4P— Q)VT, } (17)
In order to avoid non-periodic terms arising in the particular integral we must have
Jo[—2iQk;+Q2(a*By+7P—4Q)] = 0.
Hence, either Jfo=0
or 2ik, = Q(a3By+TP—4Q) (18)

and f, is arbitrary.

Since the right-hand member of (18) is real, the value of «, is a pure imaginary.

Next, take the critical terms of the right-hand members of the second pair of equations
(16). We then have

(O30 fi 20 4] 2100 g] — 200 = (2, + QDo —P-2Q)}y eir)
— O2g, +20Q87 + 51 4 20QQ ) +2Qf] = {2Q'k +Q'%(4P— Q)}fy e~ im. (19)
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STABILITY OF SATURN’S RINGS 13
In order to avoid the appearance of terms of the form 7 e~ in the particular integral we
must have Fi{—2iQk, + Q2 (Dy+TP—4Q)} = 0.
Hence either Jo=0,
or 2ik, = Q' (Dy+TP—4Q), (20)

and f; is arbitrary.

Since the right-hand member of (20) is real, «; is again a pure imaginary.

When the remaining terms of the right-hand members of equations (16) are included, the
corresponding particular integrals will be periodic. To verify this consider a term e”
placed in the right-hand side of equations (17), ¢ being an integer including zero. The
corresponding particular integral will have the denominator ‘

(r+Q)2+3Q2, 2Q(0+Q)
2%Q0(r+Q), —(0+Q)?

This determinant vanishes only for ¢ = 0, —Q, —2Q. As Q is not an integer, and the case
¢ = 0 has already been considered, all the other particular integrals are finite, determinate
and periodic.

Similarly, for the equations (17), the determinant is

(0+Q)2+3Q7,  2iQ (0+Q)

2iQ' (0 +42), —(e+Q)? |
This determinant vanishes for ¢ = —Q, —2Q-+1, —1.
The case ¢ = —1 is the case just considered and the other roots are non-integral.
(b) s=1

Take now equations (16) with s = 1. As we are chiefly interested in the nature of the
constant «;, we shall write down only the critical terms of the right-hand member. The
equations then become

— 42, 4 2iQf, + f, — 2Q%g, — 2Q5,
= {2iQ«, + Q2(a*B) — P, — Q) }f, — Q¥(aC; — 242B;) fy
— Q% —[—2ng1—[—§1—|—2sz)”1—|—29]51
= {20k, + Q24P — Q) }fo— Q%(aCy — 2aB)) fy,
— (Q243Q2) £, 4 2iQf, +f{ —21QQ0 g} — 20 g}
= {QiQ”ﬁ + Q’Z(DO"Pl - QQI)}ﬁ), e i — 9’2(0{ =+ 201)]00(’7”:
— Q2% +2iQ47 + g1+ 20QQf, +-2Qf,
— {2Q'k, + Q% (4P, — Q) o e~ i+ Q% (aB; +20B,) fye . ]

(21)

To remove the non-periodic terms which arise in the integration of these equations, we
must have

Jol— 210k, + Q2(a3By -+ TP, — 4Q)} +fy Q2 — C] +20B] —2C, +4B)) = 0, (22)
Jo{—C1+2aB] —2C, 4B} Q2+ fo { — 21Q'k, + Q?(Dy+ 7P, —40Q,)} = 0.
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14 G. R. GOLDSBROUGH ON THE
By definition 1

TP, —4Q, = Zg cosec (nm/p) —pz cos? (nm/p) cosec (nm/p)

=1

N

351 -1,
=7 > cosec (nm/p)+ Y sin (nw/p),
n=1 n=1
which is positive.
Also Bj and D, are essentially positive.

Putting 2ik; = x, the determinant of the equations (22) may be written

| = 2
A= S’Z;—y ——é’lx(ioljy' =5
where y, ¥’ are real and positive, and ¢ is real.
Then we have X —o e 2/Q oo
A=+ — — +

Hence A vanishes for a real value of x between —oo and the smaller of y'/Q’, y/Q; and again
for a real value of between the greater of y'/Q’, y/Q and +-c0.

Hence «, has two purely imaginary and distinct values.

For these determined values of «,, f; is expressed in terms of f; by (22), thus introducing
only one arbitrary constant in each case.

(ii) ko= —1Q
The terms independent of ¢ are
—4Q2f, — 20O+ fo + 2102, — 2Q4,, =0,
— Q2g— 210, + &, — 21Q%, +2Qf, =0, (23)
— (Q24-3Q02) fy — 210y +-fo + 2100 gy — 20 gg = 0,
— Q%) —2iQg;+ g, — 2000 f; +2Qf; = 0.

The periodic solutions are — —
P Sfo=T»  fo=Fiem,

8o =—2ifp, g =—2ifse",

Jo»Jo being arbitrary constants.
Taking now the terms factored by ¢, two cases arise as before, according as s equals unity

or not.

(a) s=1
For the first pair, corresponding to equations (17), we have
—4Q2f, —2iQf, + 1, +2Q%g, — 2Qg, = {—2iQ«, +Q2(a3By—P+2Q)} fo,
—Q2g, —2iQg, + &, — 202, + 20| = {20k, — Q%(Q +4P)} /.
From these we deduce that to avoid non-periodic terms arising in the solution, we must have
Jo{2iQxk, + Q¥ (a*By+7P+4Q)} = 0.

Hence either Jo=10;

or 2iQk 4+ Q?(a®By+ TP+ 4Q) = 0 (25)
and f, is arbitrary.

(24)


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

A \
1~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STABILITY OF SATURN’S RINGS 15
Again «, is a pure imaginary.
For the second pair, corresponding to equations (19), we have
— (Q24-3Q2) f{ — 2iQf] +f{ + 2iQ0 g —2Q' g} = {— 21k, +Q2(Dy—P+-2Q)} fy €',
— Q201 —21Q81 4§, — 2QQ ] +2Q'f] = {20k, — Q% (4P + Q)}f; eir.
To avoid the occurrence of non-periodic terms we must have
S{2iQk, +Q%(Dy+7TP+4Q)} = 0.
Hence again, either Jfi=0;
or 200k, +Q%(Dy+7P+4Q) = 0, (26)
and fj is arbitrary.
Also k, is again a pure imaginary.
(b) s=1
Again take equations corresponding to (21) and, as before, include only the critical
terms. The resulting equations are

—4Q2f, —2iQf, +/, +2Q%g, —2Q¢,
= {—2iQu, + QX (@® By — Py +2Q) } fo— Qa(Cy — 20By) fy,
—~Q2g, —2iQg, +§, — 202, + 20, |
= {20, — Q%(Q, +4P))} fo+ Qia(C, — 2By) fr,
— (Q24-3QY2) f — 2iQf ) +f{ +2iQ0 g{ — 20V g,
= {—2iQ'k,; +Q%(Dy— P, +2Q,) fy €T — Q'2(C] +2C)) foe™,
— Q2] —2iQp1 + g — 26QQ ] +2Qf,
’ = {20k, — Q'%(4P+ Q)} [y €™ —Q'%(aB| +2B,) f, €. )
The condition that no non-periodic terms may appear in the particular integrals of these
equations is
Fo{2iQu, + Qa3 By + TP, + 4Q,)} 7y Q2 — C; — 2C, + 2aB, + 4B,) = 0,
Jol—C1—2C,+2uB1+ 4B} Q2+ f{20Q 'k, + Q?(Dy+ TP, +4Q,)} = 0.}
An examination of the determinant of (28) shows again that ik, has two real values.
Collecting up the results (18), (20), (22), (25), (26), (28), we see that there are four

independent solutions in each of the two cases, s = 1, s==1, and in each case the exponent
Kk, is a pure imaginary.

r(27)

(28)

SOLUTIONS WHEN THE CHARACTERISTICS ARE 0,0

In this case theory indicates that the solutions are in the form of series of powers of ¢t.

Therefore we take F= ok @it efytony [ = fif tefy ..,
g =got+eg +egt..., & =g+tegteg+...,
K = €tk €Ky ...

Substitute these values in equations (13) and equate to zero the coefficients of each power
of e.
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16 G. R. GOLDSBROUGH ON THE

The terms independent of ¢ give ‘
Jo—2Qg,—30%, =0,

go+29, =0,
fo’—2Q’g(’)—— 3Q"2f; = 0,
go+2Q; =0.
The only solutions of these which are periodic of period 27 (or constants) are
‘ﬁ) =0, ‘ﬁ), =0,

go = const. = g,, gy = const. = ;.
Take next the terms in ¢t

ﬁ —2Qg, —3Q%, = 2Q«, g,

&1+ 2‘Qfl =0,
S —2Qg —3Q%) = 2Q'k, g,
&1+2Qf] = 0.

In the same way from these we have

2,8 , 2K, 9,
Si=- 3150’ fi=- 350’

—_ ’ —/
g, =const. = g,, g = const. = g,.

Here k, remains as yet undetermined.
The terms factoring ¢ give

Jo— 208, — 302, = 2Qu, 8, + 2Qu,8 0+ Qi Q, —igou*{sB; € — (p—3) B, e~ 0=97}],
Zr 20, = 5180+ Q[ 280 P 420 (B, e+ (p—s)? B, &= =7,
Ji —2Qd; —3Q%; = 20k, 81+ 2Q K, 8+ Q'¥[igy Q, +-18o{5C, €77 — (p—3) G, €1¢™I7],
& +20; = 318+ Q228 P+ 2 (B, e+ (p—3)? B,_ e0=IT}].

(29)
The second of equations (29) gives

8o+ 20, = (518 + 2 P go} -+ g, — 150, B, e +1(p—5) alXgo B, €797, (30)
g, being an arbitrary constant.
The first of equations (29) then gives
Jo+ Q% = 2Qu, By +2Qu, 80+ Q2[5 Q, — 1850 {sBy e — (p—s) B, e~ =97}]
+ 203138+ 202 P go) 7+ 20, — 21P g {s B T — (p—s) B, e7 077} (31)
To avoid non-periodic terms appearing in the integral of (21) we must have
- BEEH20PRE = 0.
Hence either go=0
or Kk, = +1Q(6P,)},
and g, is arbitrary.
Since ), except in very special circumstances, is not an integer, the terms in e*” and
e~ =97 in the right member of (31) produce corresponding terms in the integral with

non-vanishing denominators. The constant terms appearing in the same member, however,
need attention. Corresponding to them we have the particular integral

Q2f, = 2Qk, g, 4 2Qk, 8+ 2028, +10%, Q..
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STABILITY OF SATURN’S RINGS 17

These terms substituted in (30) give
gy = — (382 + 4k, 8, + 4K, 8o+ 2002Q,Zy) 7+ const.
Hence again, to avoid non-periodic terms, we must have
3Gy + 4K, 81+ 4K, 80+ 20Q0,80 = 0. (32)

The constant «, is determined at the next stage. Then (32) gives a relation between the
arbitrary constants.

Consider next the third and fourth equatlons of (29). The form of the equations being
similar to the first two of (29), the results may be written down at once. We have either

g(; =0,
or ky = +1Q'(6P,)}
and g, arbitrary.
Also, 88, + 4K, 81+ 4k, 80+ 20Q'Q, g5 = O.

We have therefore four solutions:
(i) garbitrary, g —0, & —=iQ(6P);
(ii) g, arbitrary, g,=0, «; =+1Q'(6P)%

Since P, is essentially real and positive for all valid values of s, each of the solutions repre-
sents stability.

CONCLUSION

The solutions of the stability equations just found depend upon the possibility of con-
vergent series in terms of powers of the parameter ¢, or m/M. Poincaré’s theory shows that
the convergence of these series is ensured if ¢ is sufficiently small, though no satisfactory upper
limit of its value is available. In the Saturnian system the ratio m/M, that of the mass of a
single particle to that of Saturn must be exceedingly small, though again no estimate can
be given except that indicated by Maxwell’s theory, which we have assumed for the purposes
of certain comparisons. The conclusion can be expressed that a pair of rings of the kind
described in this paper will form a stable system if the masses of the component particles are
small enough compared with that of the primary; and it seems likely that this condition is
fulfilled in the Saturnian system.

In working out the series only terms as far as the first power of ¢ have been dealt with, and
this would seem sufficient for the purpose.

The indications of the analysis lead to a fair 1nference that a system of a larger finite
number of similar rings would also be stable.
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